վҳʱ ƾ̨ ۵ Ļ Ƶ֪ʶȨ

ƱֺͲ:Ļ

2020-08-08 06:41:06  Դձ
ƱֺͲɭ 

ƱֺͲʣ

ƱֺͲַ:a g 9 559 v i p

There are many laws regulating variation, some few of which can be dimly seen, and will be hereafter briefly mentioned. I will here only allude to what may be called correlation of growth. Any change in the embryo or larva will almost certainly entail changes in the mature animal. In monstrosities, the correlations between quite distinct parts are very curious; and many instances are given in Isidore Geoffroy St Hilaire's great work on this subject. Breeders believe that long limbs are almost always accompanied by an elongated head. Some instances of correlation are quite whimsical; thus cats with blue eyes are invariably deaf; colour and constitutional peculiarities go together, of which many remarkable cases could be given amongst animals and plants. From the facts collected by Heusinger, it appears that white sheep and pigs are differently affected from coloured individuals by certain vegetable poisons. Hairless dogs have imperfect teeth; long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large feet. Hence, if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously modify other parts of the structure, owing to the mysterious laws of the correlation of growth.The result of the various, quite unknown, or dimly seen laws of variation is infinitely complex and diversified. It is well worth while carefully to study the several treatises published on some of our old cultivated plants, as on the hyacinth, potato, even the dahlia, &c.; and it is really surprising to note the endless points in structure and constitution in which the varieties and sub varieties differ slightly from each other. The whole organization seems to have become plastic, and tends to depart in some small degree from that of the parental type.

ƱֺͲʣ廭

Youatt gives an excellent illustration of the effects of a course of selection, which may be considered as unconsciously followed, in so far that the breeders could never have expected or even have wished to have produced the result which ensued namely, the production of two distinct strains. The two flocks of Leicester sheep kept by Mr Buckley and Mr Burgess, as Mr Youatt remarks, 'have been purely bred from the original stock of Mr Bakewell for upwards of fifty years. There is not a suspicion existing in the mind of any one at all acquainted with the subject that the owner of either of them has deviated in any one instance from the pure blood of Mr Bakewell's flock, and yet the difference between the sheep possessed by these two gentlemen is so great that they have the appearance of being quite different varieties.'

From these remarks it will be seen that I look at the term species, as one arbitrarily given for the sake of convenience to a set of individuals closely resembling each other, and that it does not essentially differ from the term variety, which is given to less distinct and more fluctuating forms. The term variety, again, in comparison with mere individual differences, is also applied arbitrarily, and for mere convenience sake.

Alph. De Candolle and others have shown that plants which have very wide ranges generally present varieties; and this might have been expected, as they become exposed to diverse physical conditions, and as they come into competition (which, as we shall hereafter see, is a far more important circumstance) with different sets of organic beings. But my tables further show that, in any limited country, the species which are most common, that is abound most in individuals, and the species which are most widely diffused within their own country (and this is a different consideration from wide range, and to a certain extent from commonness), often give rise to varieties sufficiently well-marked to have been recorded in botanical works. Hence it is the most flourishing, or, as they may be called, the dominant species, those which range widely over the world, are the most diffused in their own country, and are the most numerous in individuals, which oftenest produce well-marked varieties, or, as I consider them, incipient species. And this, perhaps, might have been anticipated; for, as varieties, in order to become in any degree permanent, necessarily have to struggle with the other inhabitants of the country, the species which are already dominant will be the most likely to yield offspring which, though in some slight degree modified, will still inherit those advantages that enabled their parents to become dominant over their compatriots.If the plants inhabiting a country and described in any Flora be divided into two equal masses, all those in the larger genera being placed on one side, and all those in the smaller genera on the other side, a somewhat larger number of the very common and much diffused or dominant species will be found on the side of the larger genera. This, again, might have been anticipated; for the mere fact of many species of the same genus inhabiting any country, shows that there is something in the organic or inorganic conditions of that country favourable to the genus; and, consequently, we might have expected to have found in the larger genera, or those including many species, a large proportional number of dominant species. But so many causes tend to obscure this result, that I am surprised that my tables show even a small majority on the side of the larger genera. I will here allude to only two causes of obscurity. Fresh-water and salt-loving plants have generally very wide ranges and are much diffused, but this seems to be connected with the nature of the stations inhabited by them, and has little or no relation to the size of the genera to which the species belong. Again, plants low in the scale of organisation are generally much more widely diffused than plants higher in the scale; and here again there is no close relation to the size of the genera. The cause of lowly-organised plants ranging widely will be discussed in our chapter on geographical distribution.From looking at species as only strongly-marked and well-defined varieties, I was led to anticipate that the species of the larger genera in each country would oftener present varieties, than the species of the smaller genera; for wherever many closely related species (i.e. species of the same genus) have been formed, many varieties or incipient species ought, as a general rule, to be now forming. Where many large trees grow, we expect to find saplings. Where many species of a genus have been formed through variation, circumstances have been favourable for variation; and hence we might expect that the circumstances would generally be still favourable to variation. On the other hand, if we look at each species as a special act of creation, there is no apparent reason why more varieties should occur in a group having many species, than in one having few.

ƱֺͲʣ ɻ

--------------------------------------------------------------------------------

In the north-west part of India the Kattywar breed of horses is so generally striped, that, as I hear from Colonel Poole, who examined the breed for the Indian Government, a horse without stripes is not considered as purely-bred. The spine is always striped; the legs are generally barred; and the shoulder-stripe, which is sometimes double and sometimes treble, is common; the side of the face, moreover, is sometimes striped. The stripes are plainest in the foal; and sometimes quite disappear in old horses. Colonel Poole has seen both gray and bay Kattywar horses striped when first foaled. I have, also, reason to suspect, from information given me by Mr. W. W. Edwards, that with the English race-horse the spinal stripe is much commoner in the foal than in the full-grown animal. Without here entering on further details, I may state that I have collected cases of leg and shoulder stripes in horses of very different breeds, in various countries from Britain to Eastern China; and from Norway in the north to the Malay Archipelago in the south. In all parts of the world these stripes occur far oftenest in duns and mouse-duns; by the term dun a large range of colour is included, from one between brown and black to a close approach to cream-colour.I am aware that Colonel Hamilton Smith, who has written on this subject, believes that the several breeds of the horse have descended from several aboriginal species one of which, the dun, was striped; and that the above-described appearances are all due to ancient crosses with the dun stock. But I am not at all satisfied with this theory, and should be loth to apply it to breeds so distinct as the heavy Belgian cart-horse, Welch ponies, cobs, the lanky Kattywar race, &c., inhabiting the most distant parts of the world.

ƱֺͲʣйҶ ۻ

In the diagram, each horizontal line has hitherto been supposed to represent a thousand generations, but each may represent a million or hundred million generations, and likewise a section of the successive strata of the earth's crust including extinct remains. We shall, when we come to our chapter on Geology, have to refer again to this subject, and I think we shall then see that the diagram throws light on the affinities of extinct beings, which, though generally belonging to the same orders, or families, or genera, with those now living, yet are often, in some degree, intermediate in character between existing groups; and we can understand this fact, for the extinct species lived at very ancient epochs when the branching lines of descent had diverged less.

A long list could easily be given of 'sporting plants;' by this term gardeners mean a single bud or offset, which suddenly assumes a new and sometimes very different character from that of the rest of the plant. Such buds can be propagated by grafting, &c., and sometimes by seed. These 'sports' are extremely rare under nature, but far from rare under cultivation; and in this case we see that the treatment of the parent has affected a bud or offset, and not the ovules or pollen. But it is the opinion of most physiologists that there is no essential difference between a bud and an ovule in their earliest stages of formation; so that, in fact,'sports' support my view, that variability may be largely attributed to the ovules or pollen, or to both, having been affected by the treatment of the parent prior to the act of conception. These cases anyhow show that variation is not necessarily connected, as some authors have supposed, with the act of generation.

The nature of the bond of correlation is very frequently quite obscure. M. Is. Geoffroy St Hilaire has forcibly remarked, that certain malconformations very frequently, and that others rarely coexist, without our being able to assign any reason. What can be more singular than the relation between blue eyes and deafness in cats, and the tortoise-shell colour with the female sex; the feathered feet and skin between the outer toes in pigeons, and the presence of more or less down on the young birds when first hatched, with the future colour of their plumage; or, again, the relation between the hair and teeth in the naked Turkish dog, though here probably homology comes into play? With respect to this latter case of correlation, I think it can hardly be accidental, that if we pick out the two orders of mammalia which are most abnormal in their dermal coverings, viz. Cetacea (whales) and Edentata (armadilloes, scaly ant-eaters, &c.), that these are likewise the most abnormal in their teeth.

ƱֺͲʣͻ

<----------------------------------------------------------------------------------------------------------------------------------------------------------------

Our ignorance of the laws of variation is profound. Not in one case out of a hundred can we pretend to assign any reason why this or that part differs, more or less, from the same part in the parents. But whenever we have the means of instituting a comparison, the same laws appear to have acted in producing the lesser differences between varieties of the same species, and the greater differences between species of the same genus. The external conditions of life, as climate and food, &c., seem to have induced some slight modifications. Habit in producing constitutional differences, and use in strengthening, and disuse in weakening and diminishing organs, seem to have been more potent in their effects. Homologous parts tend to vary in the same way, and homologous parts tend to cohere. Modifications in hard parts and in external parts sometimes affect softer and internal parts. When one part is largely developed, perhaps it tends to draw nourishment from the adjoining parts; and every part of the structure which can be saved without detriment to the individual, will be saved. Changes of structure at an early age will generally affect parts subsequently developed; and there are very many other correlations of growth, the nature of which we are utterly unable to understand. Multiple parts are variable in number and in structure, perhaps arising from such parts not having been closely specialized to any particular function, so that their modifications have not been closely checked by natural selection. It is probably from this same cause that organic beings low in the scale of nature are more variable than those which have their whole organisation more specialized, and are higher in the scale. Rudimentary organs, from being useless, will be disregarded by natural selection, and hence probably are variable. Specific characters that is, the characters which have come to differ since the several species of the same genus branched off from a common parent are more variable than generic characters, or those which have long been inherited, and have not differed within this same period. In these remarks we have referred to special parts or organs being still variable, because they have recently varied and thus come to differ; but we have also seen in the second Chapter that the same principle applies to the whole individual; for in a district where many species of any genus are found that is, where there has been much former variation and differentiation, or where the manufactory of new specific forms has been actively at work there, on an average, we now find most varieties or incipient species. Secondary sexual characters are highly variable, and such characters differ much in the species of the same group. Variability in the same parts of the organisation has generally been taken advantage of in giving secondary sexual differences to the sexes of the same species, and specific differences to the several species of the same genus. Any part or organ developed to an extraordinary size or in an extraordinary manner, in comparison with the same part or organ in the allied species, must have gone through an extraordinary amount of modification since the genus arose; and thus we can understand why it should often still be variable in a much higher degree than other parts; for variation is a long-continued and slow process, and natural selection will in such cases not as yet have had time to overcome the tendency to further variability and to reversion to a less modified state. But when a species with any extraordinarily-developed organ has become the parent of many modified descendants which on my view must be a very slow process, requiring a long lapse of time in this case, natural selection may readily have succeeded in giving a fixed character to the organ, in however extraordinary a manner it may be developed. Species inheriting nearly the same constitution from a common parent and exposed to similar influences will naturally tend to present analogous variations, and these same species may occasionally revert to some of the characters of their ancient progenitors. Although new and important modifications may not arise from reversion and analogous variation, such modifications will add to the beautiful and harmonious diversity of nature.Whatever the cause may be of each slight difference in the offspring from their parents and a cause for each must exist it is the steady accumulation, through natural selection, of such differences, when beneficial to the individual, that gives rise to all the more important modifications of structure, by which the innumerable beings on the face of this earth are enabled to struggle with each other, and the best adapted to survive.

ƷͼƬԸƱֺͲʣ

(ࣺӱӱ)

ƱֺͲר

ƱֺͲƼĶ

ƱֺͲ޷˧ְλ by Charles Darwin ϸ

жսҪӶٱ| ̵2018|ĸιգ˼̸ι

ƱֺͲë־ΰ˷ɴʧܸ by Charles Darwin ϸ

ƱֺͲ4Ӣۣ͸˵ͯ| ̵2018|ӡ4㼶DZͧˮ
ƱֺͲʳƷעƱֺͲ΢

΢

΢

ֻ

쵼԰