欧洲杯赔率分析:华人白宫请愿抗议“中国是亚洲病夫” 作者:不知标题会这样

2020-08-14 07:13:46  来源:人民网-人民日报海外版
欧洲杯赔率分析高景宏 

  欧洲杯赔率分析(漫画)。黄永玉绘

欧洲杯赔率分析【址:a g 9 559⒐ v i p】<  We have seen that in each country it is the species of the larger genera which oftenest present varieties or incipient species. This, indeed, might have been expected; for as natural selection acts through one form having some advantage over other forms in the struggle for existence, it will chiefly act on those which already have some advantage; and the largeness of any group shows that its species have inherited from a common ancestor some advantage in common. Hence, the struggle for the production of new and modified descendants, will mainly lie between the larger groups, which are all trying to increase in number. One large group will slowly conquer another large group, reduce its numbers, and thus lessen its chance of further variation and improvement. Within the same large group, the later and more highly perfected sub-groups, from branching out and seizing on many new places in the polity of Nature, will constantly tend to supplant and destroy the earlier and less improved sub-groups. Small and broken groups and sub-groups will finally tend to disappear. Looking to the future, we can predict that the groups of organic beings which are now large and triumphant, and which are least broken up, that is, which as yet have suffered least extinction, will for a long period continue to increase. But which groups will ultimately prevail, no man can predict; for we well know that many groups, formerly most extensively developed, have now become extinct. Looking still more remotely to the future, we may predict that, owing to the continued and steady increase of the larger groups, a multitude of smaller groups will become utterly extinct, and leave no modified descendants; and consequently that of the species living at any one period, extremely few will transmit descendants to a remote futurity. I shall have to return to this subject in the chapter on Classification, but I may add that on this view of extremely few of the more ancient species having transmitted descendants, and on the view of all the descendants of the same species making a class, we can understand how it is that there exist but very few classes in each main division of the animal and vegetable kingdoms. Although extremely few of the most ancient species may now have living and modified descendants, yet at the most remote geological period, the earth may have been as well peopled with many species of many genera, families, orders, and classes, as at the present day.Summary of Chapter   As we see that those variations which under domestication appear at any particular period of life, tend to reappear in the offspring at the same period; for instance, in the seeds of the many varieties of our culinary and agricultural plants; in the caterpillar and cocoon stages of the varieties of the silkworm; in the eggs of poultry, and in the colour of the down of their chickens; in the horns of our sheep and cattle when nearly adult; so in a state of nature, natural selection will be enabled to act on and modify organic beings at any age, by the accumulation of profitable variations at that age, and by their inheritance at a corresponding age. If it profit a plant to have its seeds more and more widely disseminated by the wind, I can see no greater difficulty in this being effected through natural selection, than in the cotton-planter increasing and improving by selection the down in the pods on his cotton-trees. Natural selection may modify and adapt the larva of an insect to a score of contingencies, wholly different from those which concern the mature insect. These modifications will no doubt affect, through the laws of correlation, the structure of the adult; and probably in the case of those insects which live only for a few hours, and which never feed, a large part of their structure is merely the correlated result of successive changes in the structure of their larvae. So, conversely, modifications in the adult will probably often affect the structure of the larva; but in all cases natural selection will ensure that modifications consequent on other modifications at a different period of life, shall not be in the least degree injurious: for if they became so, they would cause the extinction of the species.Natural selection will modify the structure of the young in relation to the parent, and of the parent in relation to the young. In social animals it will adapt the structure of each individual for the benefit of the community; if each in consequence profits by the selected change. What natural selection cannot do, is to modify the structure of one species, without giving it any advantage, for the good of another species; and though statements to this effect may be found in works of natural history, I cannot find one case which will bear investigation. A structure used only once in an animal's whole life, if of high importance to it, might be modified to any extent by natural selection; for instance, the great jaws possessed by certain insects, and used exclusively for opening the cocoon or the hard tip to the beak of nestling birds, used for breaking the egg. It has been asserted, that of the best short-beaked tumbler-pigeons more perish in the egg than are able to get out of it; so that fanciers assist in the act of hatching. Now, if nature had to make the beak of a full-grown pigeon very short for the bird's own advantage, the process of modification would be very slow, and there would be simultaneously the most rigorous selection of the young birds within the egg, which had the most powerful and hardest beaks, for all with weak beaks would inevitably perish: or, more delicate and more easily broken shells might be selected, the thickness of the shell being known to vary like every other structure.Sexual Selection

    As we see that those variations which under domestication appear at any particular period of life, tend to reappear in the offspring at the same period; for instance, in the seeds of the many varieties of our culinary and agricultural plants; in the caterpillar and cocoon stages of the varieties of the silkworm; in the eggs of poultry, and in the colour of the down of their chickens; in the horns of our sheep and cattle when nearly adult; so in a state of nature, natural selection will be enabled to act on and modify organic beings at any age, by the accumulation of profitable variations at that age, and by their inheritance at a corresponding age. If it profit a plant to have its seeds more and more widely disseminated by the wind, I can see no greater difficulty in this being effected through natural selection, than in the cotton-planter increasing and improving by selection the down in the pods on his cotton-trees. Natural selection may modify and adapt the larva of an insect to a score of contingencies, wholly different from those which concern the mature insect. These modifications will no doubt affect, through the laws of correlation, the structure of the adult; and probably in the case of those insects which live only for a few hours, and which never feed, a large part of their structure is merely the correlated result of successive changes in the structure of their larvae. So, conversely, modifications in the adult will probably often affect the structure of the larva; but in all cases natural selection will ensure that modifications consequent on other modifications at a different period of life, shall not be in the least degree injurious: for if they became so, they would cause the extinction of the species.Natural selection will modify the structure of the young in relation to the parent, and of the parent in relation to the young. In social animals it will adapt the structure of each individual for the benefit of the community; if each in consequence profits by the selected change. What natural selection cannot do, is to modify the structure of one species, without giving it any advantage, for the good of another species; and though statements to this effect may be found in works of natural history, I cannot find one case which will bear investigation. A structure used only once in an animal's whole life, if of high importance to it, might be modified to any extent by natural selection; for instance, the great jaws possessed by certain insects, and used exclusively for opening the cocoon or the hard tip to the beak of nestling birds, used for breaking the egg. It has been asserted, that of the best short-beaked tumbler-pigeons more perish in the egg than are able to get out of it; so that fanciers assist in the act of hatching. Now, if nature had to make the beak of a full-grown pigeon very short for the bird's own advantage, the process of modification would be very slow, and there would be simultaneously the most rigorous selection of the young birds within the egg, which had the most powerful and hardest beaks, for all with weak beaks would inevitably perish: or, more delicate and more easily broken shells might be selected, the thickness of the shell being known to vary like every other structure.Sexual Selection

  欧洲杯赔率分析(插画)。李 晨绘

   BEF0RE entering on the subject of this chapter, I must make a few preliminary remarks, to show how the struggle for existence bears on Natural Selection. It has been seen in the last chapter that amongst organic beings in a state of nature there is some individual variability; indeed I am not aware that this has ever been disputed. It is immaterial for us whether a multitude of doubtful forms be called species or sub-species or varieties; what rank, for instance, the two or three hundred doubtful forms of British plants are entitled to hold, if the existence of any well-marked varieties be admitted. But the mere existence of individual variability and of some few well-marked varieties, though necessary as the foundation for the work, helps us but little in understanding how species arise in nature. How have all those exquisite adaptations of one part of the organisation to another part, and to the conditions of life, and of one distinct organic being to another being, been perfected? We see these beautiful co-adaptations most plainly in the woodpecker and missletoe; and only a little less plainly in the humblest parasite which clings to the hairs of a quadruped or feathers of a bird; in the structure of the beetle which dives through the water; in the plumed seed which is wafted by the gentlest breeze; in short, we see beautiful adaptations everywhere and in every part of the organic world.Again, it may be asked, how is it that varieties, which I have called incipient species, become ultimately converted into good and distinct species, which in most cases obviously differ from each other far more than do the varieties of the same species? How do those groups of species, which constitute what are called distinct genera, and which differ from each other more than do the species of the same genus, arise? All these results, as we shall more fully see in the next chapter, follow inevitably from the struggle for life. Owing to this struggle for life, any variation, however slight and from whatever cause proceeding, if it be in any degree profitable to an individual of any species, in its infinitely complex relations to other organic beings and to external nature, will tend to the preservation of that individual, and will generally be inherited by its offspring. The offspring, also, will thus have a better chance of surviving, for, of the many individuals of any species which are periodically born, but a small number can survive. I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection, in order to mark its relation to man's power of selection. We have seen that man by selection can certainly produce great results, and can adapt organic beings to his own uses, through the accumulation of slight but useful variations, given to him by the hand of Nature. But Natural Selection, as we shall hereafter see, is a power incessantly ready for action, and is as immeasurably superior to man's feeble efforts, as the works of Nature are to those of Art.We will now discuss in a little more detail the struggle for existence. In my future work this subject shall be treated, as it well deserves, at much greater length. The elder De Candolle and Lyell have largely and philosophically shown that all organic beings are exposed to severe competition. In regard to plants, no one has treated this subject with more spirit and ability than W. Herbert, Dean of Manchester, evidently the result of his great horticultural knowledge. Nothing is easier than to admit in words the truth of the universal struggle for life, or more difficult at least I have found it so than constantly to bear this conclusion in mind. Yet unless it be thoroughly engrained in the mind, I am convinced that the whole economy of nature, with every fact on distribution, rarity, abundance, extinction, and variation, will be dimly seen or quite misunderstood. We behold the face of nature bright with gladness, we often see superabundance of food; we do not see, or we forget, that the birds which are idly singing round us mostly live on insects or seeds, and are thus constantly destroying life; or we forget how largely these songsters, or their eggs, or their nestlings are destroyed by birds and beasts of prey; we do not always bear in mind, that though food may be now superabundant, it is not so at all seasons of each recurring year.I should premise that I use the term Struggle for Existence in a large and metaphorical sense, including dependence of one being on another, and including (which is more important) not only the life of the individual, but success in leaving progeny. Two canine animals in a time of dearth, may be truly said to struggle with each other which shall get food and live. But a plant on the edge of a desert is said to struggle for life against the drought, though more properly it should be said to be dependent on the moisture. A plant which annually produces a thousand seeds, of which on an average only one comes to maturity, may be more truly said to struggle with the plants of the same and other kinds which already clothe the ground. The missletoe is dependent on the apple and a few other trees, but can only in a far-fetched sense be said to struggle with these trees, for if too many of these parasites grow on the same tree, it will languish and die. But several seedling missletoes, growing close together on the same branch, may more truly be said to struggle with each other. As the missletoe is disseminated by birds, its existence depends on birds; and it may metaphorically be said to struggle with other fruit-bearing plants, in order to tempt birds to devour and thus disseminate its seeds rather than those of other plants. In these several senses, which pass into each other, I use for convenience sake the general term of struggle for existence.A struggle for existence inevitably follows from the high rate at which all organic beings tend to increase. Every being, which during its natural lifetime produces several eggs or seeds, must suffer destruction during some period of its life, and during some season or occasional year, otherwise, on the principle of geometrical increase, its numbers would quickly become so inordinately great that no country could support the product. Hence, as more individuals are produced than can possibly survive, there must in every case be a struggle for existence, either one individual with another of the same species, or with the individuals of distinct species, or with the physical conditions of life. It is the doctrine of Malthus applied with manifold force to the whole animal and vegetable kingdoms; for in this case there can be no artificial increase of food, and no prudential restraint from marriage. Although some species may be now increasing, more or less rapidly, in numbers, all cannot do so, for the world would not hold them.

    Guided by theoretical considerations, I thought that some interesting results might be obtained in regard to the nature and relations of the species which vary most, by tabulating all the varieties in several well-worked floras. At first this seemed a simple task; but Mr H. C. Watson, to whom I am much indebted for valuable advice and assistance on this subject, soon convinced me that there were many difficulties, as did subsequently Dr Hooker, even in stronger terms. I shall reserve for my future work the discussion of these difficulties, and the tables themselves of the proportional numbers of the varying species. Dr Hooker permits me to add, that after having carefully read my manuscript, and examined the tables, he thinks that the following statements are fairly well established. The whole subject, however, treated as it necessarily here is with much brevity, is rather perplexing, and allusions cannot be avoided to the 'struggle for existence,' 'divergence of character,' and other questions, hereafter to be discussed.

    In the case of most of our anciently domesticated animals and plants, I do not think it is possible to come to any definite conclusion, whether they have descended from one or several species. The argument mainly relied on by those who believe in the multiple origin of our domestic animals is, that we find in the most ancient records, more especially on the monuments of Egypt, much diversity in the breeds; and that some of the breeds closely resemble, perhaps are identical with, those still existing. Even if this latter fact were found more strictly and generally true than seems to me to be the case, what does it show, but that some of our breeds originated there, four or five thousand years ago? But Mr Horner's researches have rendered it in some degree probable that man sufficiently civilized to have manufactured pottery existed in the valley of the Nile thirteen or fourteen thousand years ago; and who will pretend to say how long before these ancient periods, savages, like those of Tierra del Fuego or Australia, who possess a semi-domestic dog, may not have existed in Egypt?The whole subject must, I think, remain vague; nevertheless, I may, without here entering on any details, state that, from geographical and other considerations, I think it highly probable that our domestic dogs have descended from several wild species. In regard to sheep and goats I can form no opinion. I should think, from facts communicated to me by Mr Blyth, on the habits, voice, and constitution, &c., of the humped Indian cattle, that these had descended from a different aboriginal stock from our European cattle; and several competent judges believe that these latter have had more than one wild parent. With respect to horses, from reasons which I cannot give here, I am doubtfully inclined to believe, in opposition to several authors, that all the races have descended from one wild stock. Mr Blyth, whose opinion, from his large and varied stores of knowledge, I should value more than that of almost any one, thinks that all the breeds of poultry have proceeded from the common wild Indian fowl (Gallus bankiva). In regard to ducks and rabbits, the breeds of which differ considerably from each other in structure, I do not doubt that they all have descended from the common wild duck and rabbit.The doctrine of the origin of our several domestic races from several aboriginal stocks, has been carried to an absurd extreme by some authors. They believe that every race which breeds true, let the distinctive characters be ever so slight, has had its wild prototype. At this rate there must have existed at least a score of species of wild cattle, as many sheep, and several goats in Europe alone, and several even within Great Britain. One author believes that there formerly existed in Great Britain eleven wild species of sheep peculiar to it! When we bear in mind that Britain has now hardly one peculiar mammal, and France but few distinct from those of Germany and conversely, and so with Hungary, Spain, &c., but that each of these kingdoms possesses several peculiar breeds of cattle, sheep, &c., we must admit that many domestic breeds have originated in Europe; for whence could they have been derived, as these several countries do not possess a number of peculiar species as distinct parent-stocks? So it is in India. Even in the case of the domestic dogs of the whole world, which I fully admit have probably descended from several wild species, I cannot doubt that there has been an immense amount of inherited variation. Who can believe that animals closely resembling the Italian greyhound, the bloodhound, the bull-dog, or Blenheim spaniel, &c. so unlike all wild Canidae ever existed freely in a state of nature? It has often been loosely said that all our races of dogs have been produced by the crossing of a few aboriginal species; but by crossing we can get only forms in some degree intermediate between their parents; and if we account for our several domestic races by this process, we must admit the former existence of the most extreme forms, as the Italian greyhound, bloodhound, bull-dog, &c., in the wild state. Moreover, the possibility of making distinct races by crossing has been greatly exaggerated. There can be no doubt that a race may be modified by occasional crosses, if aided by the careful selection of those individual mongrels, which present any desired character; but that a race could be obtained nearly intermediate between two extremely different races or species, I can hardly believe. Sir J. Sebright expressly experimentised for this object, and failed. The offspring from the first cross between two pure breeds is tolerably and sometimes (as I have found with pigeons) extremely uniform, and everything seems simple enough; but when these mongrels are crossed one with another for several generations, hardly two of them will be alike, and then the extreme difficulty, or rather utter hopelessness, of the task becomes apparent. Certainly, a breed intermediate between two very distinct breeds could not be got without extreme care and long-continued selection; nor can I find a single case on record of a permanent race having been thus formed.On the Breeds of the Domestic pigeon.

 欧洲杯赔率分析(漫画)。张 飞绘

   In the case of a gigantic tree covered with innumerable flowers, it may be objected that pollen could seldom be carried from tree to tree, and at most only from flower to flower on the same tree, and that flowers on the same tree can be considered as distinct individuals only in a limited sense. I believe this objection to be valid, but that nature has largely provided against it by giving to trees a strong tendency to bear flowers with separated sexes. When the sexes are separated, although the male and female flowers may be produced on the same tree, we can see that pollen must be regularly carried from flower to flower; and this will give a better chance of pollen being occasionally carried from tree to tree. That trees belonging to all Orders have their sexes more often separated than other plants, I find to be the case in this country; and at my request Dr Hooker tabulated the trees of New Zealand, and Dr Asa Gray those of the United States, and the result was as I anticipated. On the other hand, Dr Hooker has recently informed me that he finds that the rule does not hold in Australia; and I have made these few remarks on the sexes of trees simply to call attention to the subject.Turning for a very brief space to animals: on the land there are some hermaphrodites, as land-mollusca and earth-worms; but these all pair. As yet I have not found a single case of a terrestrial animal which fertilises itself. We can understand this remarkable fact, which offers so strong a contrast with terrestrial plants, on the view of an occasional cross being indispensable, by considering the medium in which terrestrial animals live, and the nature of the fertilising element; for we know of no means, analogous to the action of insects and of the wind in the case of plants, by which an occasional cross could be effected with terrestrial animals without the concurrence of two individuals. Of aquatic animals, there are many self-fertilising hermaphrodites; but here currents in the water offer an obvious means for an occasional cross. And, as in the case of flowers, I have as yet failed, after consultation with one of the highest authorities, namely, Professor Huxley, to discover a single case of an hermaphrodite animal with the organs of reproduction so perfectly enclosed within the body, that access from without and the occasional influence of a distinct individual can be shown to be physically impossible. Cirripedes long appeared to me to present a case of very great difficulty under this point of view; but I have been enabled, by a fortunate chance, elsewhere to prove that two individuals, though both are self-fertilising hermaphrodites, do sometimes cross.It must have struck most naturalists as a strange anomaly that, in the case of both animals and plants, species of the same family and even of the same genus, though agreeing closely with each other in almost their whole organisation, yet are not rarely, some of them hermaphrodites, and some of them unisexual. But if, in fact, all hermaphrodites do occasionally intercross with other individuals, the difference between hermaphrodites and unisexual species, as far as function is concerned, becomes very small.<  In man's methodical selection, a breeder selects for some definite object, and free intercrossing will wholly stop his work. But when many men, without intending to alter the breed, have a nearly common standard of perfection, and all try to get and breed from the best animals, much improvement and modification surely but slowly follow from this unconscious process of selection, notwithstanding a large amount of crossing with inferior animals. Thus it will be in nature; for within a confined area, with some place in its polity not so perfectly occupied as might be, natural selection will always tend to preserve all the individuals varying in the right direction, though in different degrees, so as better to fill up the unoccupied place. But if the area be large, its several districts will almost certainly present different conditions of life; and then if natural selection be modifying and improving a species in the several districts, there will be intercrossing with the other individuals of the same species on the confines of each. And in this case the effects of intercrossing can hardly be counterbalanced by natural selection always tending to modify all the individuals in each district in exactly the same manner to the conditions of each; for in a continuous area, the conditions will generally graduate away insensibly from one district to another. The intercrossing will most affect those animals which unite for each birth, which wander much, and which do not breed at a very quick rate. Hence in animals of this nature, for instance in birds, varieties will generally be confined to separated countries; and this I believe to be the case. In hermaphrodite organisms which cross only occasionally, and likewise in animals which unite for each birth, but which wander little and which can increase at a very rapid rate, a new and improved variety might be quickly formed on any one spot, and might there maintain itself in a body, so that whatever intercrossing took place would be chiefly between the individuals of the same new variety. A local variety when once thus formed might subsequently slowly spread to other districts. On the above principle, nurserymen always prefer getting seed from a large body of plants of the same variety, as the chance of intercrossing with other varieties is thus lessened.Even in the case of slow-breeding animals, which unite for each birth, we must not overrate the effects of intercrosses in retarding natural selection; for I can bring a considerable catalogue of facts, showing that within the same area, varieties of the same animal can long remain distinct, from haunting different stations, from breeding at slightly different seasons, or from varieties of the same kind preferring to pair together.

    If there exist savages so barbarous as never to think of the inherited character of the offspring of their domestic animals, yet any one animal particularly useful to them, for any special purpose, would be carefully preserved during famines and other accidents, to which savages are so liable, and such choice animals would thus generally leave more offspring than the inferior ones; so that in this case there would be a kind of unconscious selection going on. We see the value set on animals even by the barbarians of Tierra del Fuego, by their killing and devouring their old women, in times of dearth, as of less value than their dogs.

 欧洲杯赔率分析(中国画)。叶 雄绘

   The nature of the bond of correlation is very frequently quite obscure. M. Is. Geoffroy St Hilaire has forcibly remarked, that certain malconformations very frequently, and that others rarely coexist, without our being able to assign any reason. What can be more singular than the relation between blue eyes and deafness in cats, and the tortoise-shell colour with the female sex; the feathered feet and skin between the outer toes in pigeons, and the presence of more or less down on the young birds when first hatched, with the future colour of their plumage; or, again, the relation between the hair and teeth in the naked Turkish dog, though here probably homology comes into play? With respect to this latter case of correlation, I think it can hardly be accidental, that if we pick out the two orders of mammalia which are most abnormal in their dermal coverings, viz. Cetacea (whales) and Edentata (armadilloes, scaly ant-eaters, &c.), that these are likewise the most abnormal in their teeth.

    This subject will be more fully discussed in our chapter on Geology; but it must be here alluded to from being intimately connected with natural selection. Natural selection acts solely through the preservation of variations in some way advantageous, which consequently endure. But as from the high geometrical powers of increase of all organic beings, each area is already fully stocked with inhabitants, it follows that as each selected and favoured form increases in number, so will the less favoured forms decrease and become rare. Rarity, as geology tells us, is the precursor to extinction. We can, also, see that any form represented by few individuals will, during fluctuations in the seasons or in the number of its enemies, run a good chance of utter extinction. But we may go further than this; for as new forms are continually and slowly being produced, unless we believe that the number of specific forms goes on perpetually and almost indefinitely increasing, numbers inevitably must become extinct. That the number of specific forms has not indefinitely increased, geology shows us plainly; and indeed we can see reason why they should not have thus increased, for the number of places in the polity of nature is not indefinitely great, not that we have any means of knowing that any one region has as yet got its maximum of species. probably no region is as yet fully stocked, for at the Cape of Good Hope, where more species of plants are crowded together than in any other quarter of the world, some foreign plants have become naturalised, without causing, as far as we know, the extinction of any natives.Furthermore, the species which are most numerous in individuals will have the best chance of producing within any given period favourable variations. We have evidence of this, in the facts given in the second chapter, showing that it is the common species which afford the greatest number of recorded varieties, or incipient species. Hence, rare species will be less quickly modified or improved within any given period, and they will consequently be beaten in the race for life by the modified descendants of the commoner species.

<  The eyes of moles and of some burrowing rodents are rudimentary in size, and in some cases are quite covered up by skin and fur. This state of the eyes is probably due to gradual reduction from disuse, but aided perhaps by natural selection. In South America, a burrowing rodent, the tuco-tuco, or Ctenomys, is even more subterranean in its habits than the mole; and I was assured by a Spaniard, who had often caught them, that they were frequently blind; one which I kept alive was certainly in this condition, the cause, as appeared on dissection, having been inflammation of the nictitating membrane. As frequent inflammation of the eyes must be injurious to any animal, and as eyes are certainly not indispensable to animals with subterranean habits, a reduction in their size with the adhesion of the eyelids and growth of fur over them, might in such case be an advantage; and if so, natural selection would constantly aid the effects of disuse.   What checks the natural tendency of each species to increase in number is most obscure. Look at the most vigorous species; by as much as it swarms in numbers, by so much will its tendency to increase be still further increased. We know not exactly what the checks are in even one single instance. Nor will this surprise any one who reflects how ignorant we are on this head, even in regard to mankind, so incomparably better known than any other animal. This subject has been ably treated by several authors, and I shall, in my future work, discuss some of the checks at considerable length, more especially in regard to the feral animals of South America. Here I will make only a few remarks, just to recall to the reader's mind some of the chief points. Eggs or very young animals seem generally to suffer most, but this is not invariably the case. With plants there is a vast destruction of seeds, but, from some observations which I have made, I believe that it is the seedlings which suffer most from germinating in ground already thickly stocked with other plants. Seedlings, also, are destroyed in vast numbers by various enemies; for instance, on a piece of ground three feet long and two wide, dug and cleared, and where there could be no choking from other plants, I marked all the seedlings of our native weeds as they came up, and out of the 357 no less than 295 were destroyed, chiefly by slugs and insects. If turf which has long been mown, and the case would be the same with turf closely browsed by quadrupeds, be let to grow, the more vigorous plants gradually kill the less vigorous, though fully grown, plants: thus out of twenty species growing on a little plot of turf (three feet by four) nine species perished from the other species being allowed to grow up freely.The amount of food for each species of course gives the extreme limit to which each can increase; but very frequently it is not the obtaining food, but the serving as prey to other animals, which determines the average numbers of a species. Thus, there seems to be little doubt that the stock of partridges, grouse, and hares on any large estate depends chiefly on the destruction of vermin. If not one head of game were shot during the next twenty years in England, and, at the same time, if no vermin were destroyed, there would, in all probability, be less game than at present, although hundreds of thousands of game animals are now annually killed. On the other hand, in some cases, as with the elephant and rhinoceros, none are destroyed by beasts of prey: even the tiger in India most rarely dares to attack a young elephant protected by its dam.

    Climate plays an important part in determining the average numbers of a species, and periodical seasons of extreme cold or drought, I believe to be the most effective of all checks. I estimated that the winter of 1854-55 destroyed four-fifths of the birds in my own grounds; and this is a tremendous destruction, when we remember that ten per cent. is an extraordinarily severe mortality from epidemics with man. The action of climate seems at first sight to be quite independent of the struggle for existence; but in so far as climate chiefly acts in reducing food, it brings on the most severe struggle between the individuals, whether of the same or of distinct species, which subsist on the same kind of food. Even when climate, for instance extreme cold, acts directly, it will be the least vigorous, or those which have got least food through the advancing winter, which will suffer most. When we travel from south to north, or from a damp region to a dry, we invariably see some species gradually getting rarer and rarer, and finally disappearing; and the change of climate being conspicuous, we are tempted to attribute the whole effect to its direct action. But this is a very false view: we forget that each species, even where it most abounds, is constantly suffering enormous destruction at some period of its life, from enemies or from competitors for the same place and food; and if these enemies or competitors be in the least degree favoured by any slight change of climate, they will increase in numbers, and, as each area is already fully stocked with inhabitants, the other species will decrease. When we travel southward and see a species decreasing in numbers, we may feel sure that the cause lies quite as much in other species being favoured, as in this one being hurt. So it is when we travel northward, but in a somewhat lesser degree, for the number of species of all kinds, and therefore of competitors, decreases northwards; hence in going northward, or in ascending a mountain, we far oftener meet with stunted forms, due to the directly injurious action of climate, than we do in proceeding southwards or in descending a mountain. When we reach the Arctic regions, or snow-capped summits, or absolute deserts, the struggle for life is almost exclusively with the elements.That climate acts in main part indirectly by favouring other species, we may clearly see in the prodigious number of plants in our gardens which can perfectly well endure our climate, but which never become naturalised, for they cannot compete with our native plants, nor resist destruction by our native animals.

  欧洲杯赔率分析(油画)。王利民绘

<  In order to make it clear how, as I believe, natural selection acts, I must beg permission to give one or two imaginary illustrations. Let us take the case of a wolf, which preys on various animals, securing some by craft, some by strength, and some by fleetness; and let us suppose that the fleetest prey, a deer for instance, had from any change in the country increased in numbers, or that other prey had decreased in numbers, during that season of the year when the wolf is hardest pressed for food. I can under such circumstances see no reason to doubt that the swiftest and slimmest wolves would have the best chance of surviving, and so be preserved or selected, provided always that they retained strength to master their prey at this or at some other period of the year, when they might be compelled to prey on other animals. I can see no more reason to doubt this, than that man can improve the fleetness of his greyhounds by careful and methodical selection, or by that unconscious selection which results from each man trying to keep the best dogs without any thought of modifying the breed.Even without any change in the proportional numbers of the animals on which our wolf preyed, a cub might be born with an innate tendency to pursue certain kinds of prey. Nor can this be thought very improbable; for we often observe great differences in the natural tendencies of our domestic animals; one cat, for instance, taking to catch rats, another mice; one cat, according to Mr. St. John, bringing home winged game, another hares or rabbits, and another hunting on marshy ground and almost nightly catching woodcocks or snipes. The tendency to catch rats rather than mice is known to be inherited. Now, if any slight innate change of habit or of structure benefited an individual wolf, it would have the best chance of surviving and of leaving offspring. Some of its young would probably inherit the same habits or structure, and by the repetition of this process, a new variety might be formed which would either supplant or coexist with the parent-form of wolf. Or, again, the wolves inhabiting a mountainous district, and those frequenting the lowlands, would naturally be forced to hunt different prey; and from the continued preservation of the individuals best fitted for the two sites, two varieties might slowly be formed. These varieties would cross and blend where they met; but to this subject of intercrossing we shall soon have to return. I may add, that, according to Mr. Pierce, there are two varieties of the wolf inhabiting the Catskill Mountains in the United States, one with a light greyhound-like form, which pursues deer, and the other more bulky, with shorter legs, which more frequently attacks the shepherd's flocks.Let us now take a more complex case. Certain plants excrete a sweet juice, apparently for the sake of eliminating something injurious from their sap: this is effected by glands at the base of the stipules in some Leguminosae, and at the back of the leaf of the common laurel. This juice, though small in quantity, is greedily sought by insects. Let us now suppose a little sweet juice or nectar to be excreted by the inner bases of the petals of a flower. In this case insects in seeking the nectar would get dusted with pollen, and would certainly often transport the pollen from one flower to the stigma of another flower. The flowers of two distinct individuals of the same species would thus get crossed; and the act of crossing, we have good reason to believe (as will hereafter be more fully alluded to), would produce very vigorous seedlings, which consequently would have the best chance of flourishing and surviving. Some of these seedlings would probably inherit the nectar-excreting power. Those in individual flowers which had the largest glands or nectaries, and which excreted most nectar, would be oftenest visited by insects, and would be oftenest crossed; and so in the long-run would gain the upper hand. Those flowers, also, which had their stamens and pistils placed, in relation to the size and habits of the particular insects which visited them, so as to favour in any degree the transportal of their pollen from flower to flower, would likewise be favoured or selected. We might have taken the case of insects visiting flowers for the sake of collecting pollen instead of nectar; and as pollen is formed for the sole object of fertilisation, its destruction appears a simple loss to the plant; yet if a little pollen were carried, at first occasionally and then habitually, by the pollen-devouring insects from flower to flower, and a cross thus effected, although nine-tenths of the pollen were destroyed, it might still be a great gain to the plant; and those individuals which produced more and more pollen, and had larger and larger anthers, would be selected.When our plant, by this process of the continued preservation or natural selection of more and more attractive flowers, had been rendered highly attractive to insects, they would, unintentionally on their part, regularly carry pollen from flower to flower; and that they can most effectually do this, I could easily show by many striking instances. I will give only one not as a very striking case, but as likewise illustrating one step in the separation of the sexes of plants, presently to be alluded to. Some holly-trees bear only male flowers, which have four stamens producing rather a small quantity of pollen, and a rudimentary pistil; other holly-trees bear only female flowers; these have a full-sized pistil, and four stamens with shrivelled anthers, in which not a grain of pollen can be detected. Having found a female tree exactly sixty yards from a male tree, I put the stigmas of twenty flowers, taken from different branches, under the microscope, and on all, without exception, there were pollen-grains, and on some a profusion of pollen. As the wind had set for several days from the female to the male tree, the pollen could not thus have been carried. The weather had been cold and boisterous, and therefore not favourable to bees, nevertheless every female flower which I examined had been effectually fertilised by the bees, accidentally dusted with pollen, having flown from tree to tree in search of nectar. But to return to our imaginary case: as soon as the plant had been rendered so highly attractive to insects that pollen was regularly carried from flower to flower, another process might commence. No naturalist doubts the advantage of what has been called the 'physiological division of labour;' hence we may believe that it would be advantageous to a plant to produce stamens alone in one flower or on one whole plant, and pistils alone in another flower or on another plant. In plants under culture and placed under new conditions of life, sometimes the male organs and sometimes the female organs become more or less impotent; now if we suppose this to occur in ever so slight a degree under nature, then as pollen is already carried regularly from flower to flower, and as a more complete separation of the sexes of our plant would be advantageous on the principle of the division of labour, individuals with this tendency more and more increased, would be continually favoured or selected, until at last a complete separation of the sexes would be effected.Let us now turn to the nectar-feeding insects in our imaginary case: we may suppose the plant of which we have been slowly increasing the nectar by continued selection, to be a common plant; and that certain insects depended in main part on its nectar for food. I could give many facts, showing how anxious bees are to save time; for instance, their habit of cutting holes and sucking the nectar at the bases of certain flowers, which they can, with a very little more trouble, enter by the mouth. Bearing such facts in mind, I can see no reason to doubt that an accidental deviation in the size and form of the body, or in the curvature and length of the proboscis, &c., far too slight to be appreciated by us, might profit a bee or other insect, so that an individual so characterised would be able to obtain its food more quickly, and so have a better chance of living and leaving descendants. Its descendants would probably inherit a tendency to a similar slight deviation of structure. The tubes of the corollas of the common red and incarnate clovers (Trifolium pratense and incarnatum) do not on a hasty glance appear to differ in length; yet the hive-bee can easily suck the nectar out of the incarnate clover, but not out of the common red clover, which is visited by humble-bees alone; so that whole fields of the red clover offer in vain an abundant supply of precious nectar to the hive-bee. Thus it might be a great advantage to the hive-bee to have a slightly longer or differently constructed proboscis. On the other hand, I have found by experiment that the fertility of clover greatly depends on bees visiting and moving parts of the corolla, so as to push the pollen on to the stigmatic surface. Hence, again, if humble-bees were to become rare in any country, it might be a great advantage to the red clover to have a shorter or more deeply divided tube to its corolla, so that the hive-bee could visit its flowers. Thus I can understand how a flower and a bee might slowly become, either simultaneously or one after the other, modified and adapted in the most perfect manner to each other, by the continued preservation of individuals presenting mutual and slightly favourable deviations of structure.I am well aware that this doctrine of natural selection, exemplified in the above imaginary instances, is open to the same objections which were at first urged against Sir Charles Lyell's noble views on 'the modern changes of the earth, as illustrative of geology;' but we now very seldom hear the action, for instance, of the coast-waves, called a trifling and insignificant cause, when applied to the excavation of gigantic valleys or to the formation of the longest lines of inland cliffs. Natural selection can act only by the preservation and accumulation of infinitesimally small inherited modifications, each profitable to the preserved being; and as modern geology has almost banished such views as the excavation of a great valley by a single diluvial wave, so will natural selection, if it be a true principle, banish the belief of the continued creation of new organic beings, or of any great and sudden modification in their structure.   Instances could be given of the same variety being produced under conditions of life as different as can well be conceived; and, on the other hand, of different varieties being produced from the same species under the same conditions. Such facts show how indirectly the conditions of life must act. Again, innumerable instances are known to every naturalist of species keeping true, or not varying at all, although living under the most opposite climates. Such considerations as these incline me to lay very little weight on the direct action of the conditions of life. Indirectly, as already remarked, they seem to play an important part in affecting the reproductive system, and in thus inducing variability; and natural selection will then accumulate all profitable variations, however slight, until they become plainly developed and appreciable by us.

    Hence, also, we can see that when a plant or animal is placed in a new country amongst new competitors, though the climate may be exactly the same as in its former home, yet the conditions of its life will generally be changed in an essential manner. If we wished to increase its average numbers in its new home, we should have to modify it in a different way to what we should have done in its native country; for we should have to give it some advantage over a different set of competitors or enemies.

  (本文作品图片均来自欧洲杯赔率分析)

(责编:刘颖颖、丁涛)

欧洲杯赔率分析相关专题

欧洲杯赔率分析推荐阅读

欧洲杯赔率分析徐永杰黄冈实行人口出行管控:每户家庭每2天可派1人上街采购物资   I know of no case better adapted to show the importance of the laws of correlation in modifying important structures, independently of utility and, therefore, of natural selection, than that of the difference between the outer and inner flowers in some Compositous and Umbelliferous plants. Every one knows the difference in the ray and central florets of, for instance, the daisy, and this difference is often accompanied with the abortion of parts of the flower. But, in some Compositous plants, the seeds also differ in shape and sculpture; and even the ovary itself, with its accessory parts, differs, as has been described by Cassini. These differences have been attributed by some authors to pressure, and the shape of the seeds in the ray-florets in some Compositae countenances this idea; but, in the case of the corolla of the Umbelliferae, it is by no means, as Dr Hooker informs me, in species with the densest heads that the inner and outer flowers most frequently differ. It might have been thought that the development of the ray-petals by drawing nourishment from certain other parts of the flower had caused their abortion; but in some Compositae there is a difference in the seeds of the outer and inner florets without any difference in the corolla. Possibly, these several differences may be connected with some difference in the flow of nutriment towards the central and external flowers: we know, at least, that in irregular flowers, those nearest to the axis are oftenest subject to peloria, and become regular. I may add, as an instance of this, and of a striking case of correlation, that I have recently observed in some garden pelargoniums, that the central flower of the truss often loses the patches of darker colour in the two upper petals; and that when this occurs, the adherent nectary is quite aborted; when the colour is absent from only one of the two upper petals, the nectary is only much shortened.With respect to the difference in the corolla of the central and exterior flowers of a head or umbel, I do not feel at all sure that C. C. Sprengel's idea that the ray-florets serve to attract insects, whose agency is highly advantageous in the fertilisation of plants of these two orders, is so far-fetched, as it may at first appear: and if it be advantageous, natural selection may have come into play. But in regard to the differences both in the internal and external structure of the seeds, which are not always correlated with any differences in the flowers, it seems impossible that they can be in any way advantageous to the plant: yet in the Umbelliferae these differences are of such apparent importance the seeds being in some cases, according to Tausch, orthospermous in the exterior flowers and coelospermous in the central flowers, that the elder De Candolle founded his main divisions of the order on analogous differences. Hence we see that modifications of structure, viewed by systematists as of high value, may be wholly due to unknown laws of correlated growth, and without being, as far as we can see, of the slightest service to the species.We may often falsely attribute to correlation of growth, structures which are common to whole groups of species, and which in truth are simply due to inheritance; for an ancient progenitor may have acquired through natural selection some one modification in structure, and, after thousands of generations, some other and independent modification; and these two modifications, having been transmitted to a whole group of descendants with diverse habits, would naturally be thought to be correlated in some necessary manner. So, again, I do not doubt that some apparent correlations, occurring throughout whole orders, are entirely due to the manner alone in which natural selection can act. For instance, Alph. De Candolle has remarked that winged seeds are never found in fruits which do not open: I should explain the rule by the fact that seeds could not gradually become winged through natural selection, except in fruits which opened; so that the individual plants producing seeds which were a little better fitted to be wafted further, might get an advantage over those producing seed less fitted for dispersal; and this process could not possibly go on in fruit which did not open.The elder Geoffroy and Goethe propounded, at about the same period, their law of compensation or balancement of growth; or, as Goethe expressed it, 'in order to spend on one side, nature is forced to economise on the other side.' I think this holds true to a certain extent with our domestic productions: if nourishment flows to one part or organ in excess, it rarely flows, at least in excess, to another part; thus it is difficult to get a cow to give much milk and to fatten readily. The same varieties of the cabbage do not yield abundant and nutritious foliage and a copious supply of oil-bearing seeds. When the seeds in our fruits become atrophied, the fruit itself gains largely in size and quality. In our poultry, a large tuft of feathers on the head is generally accompanied by a diminished comb, and a large beard by diminished wattles. With species in a state of nature it can hardly be maintained that the law is of universal application; but many good observers, more especially botanists, believe in its truth. I will not, however, here give any instances, for I see hardly any way of distinguishing between the effects, on the one hand, of a part being largely developed through natural selection and another and adjoining part being reduced by this same process or by disuse, and, on the other hand, the actual withdrawal of nutriment from one part owing to the excess of growth in another and adjoining part.I suspect, also, that some of the cases of compensation which have been advanced, and likewise some other facts, may be merged under a more general principle, namely, that natural selection is continually trying to economise in every part of the organisation. If under changed conditions of life a structure before useful becomes less useful, any diminution, however slight, in its development, will be seized on by natural selection, for it will profit the individual not to have its nutriment wasted in building up an useless structure. I can thus only understand a fact with which I was much struck when examining cirripedes, and of which many other instances could be given: namely, that when a cirripede is parasitic within another and is thus protected, it loses more or less completely its own shell or carapace. This is the case with the male Ibla, and in a truly extraordinary manner with the Proteolepas: for the carapace in all other cirripedes consists of the three highly-important anterior segments of the head enormously developed, and furnished with great nerves and muscles; but in the parasitic and protected Proteolepas, the whole anterior part of the head is reduced to the merest rudiment attached to the bases of the prehensile antennae. Now the saving of a large and complex structure, when rendered superfluous by the parasitic habits of the Proteolepas, though effected by slow steps, would be a decided advantage to each successive individual of the species; for in the struggle for life to which every animal is exposed, each individual Proteolepas would have a better chance of supporting itself, by less nutriment being wasted in developing a structure now become useless.Thus, as I believe, natural selection will always succeed in the long run in reducing and saving every part of the organisation, as soon as it is rendered superfluous, without by any means causing some other part to be largely developed in a corresponding degree. And, conversely, that natural selection may perfectly well succeed in largely developing any organ, without requiring as a necessary compensation the reduction of some adjoining part. 【详细】

8架运输机4地联动驰援武汉| 汉语盘点2018|抗“疫”前线的俊美“战士”

欧洲杯赔率分析海侃河南一村干部瘫睡在地上,连续十几天奋战疫情没回过家   From these several considerations and from the many special facts which I have collected, but which I am not here able to give, I am strongly inclined to suspect that, both in the vegetable and animal kingdoms, an occasional intercross with a distinct individual is a law of nature. I am well aware that there are, on this view, many cases of difficulty, some of which I am trying to investigate. Finally then, we may conclude that in many organic beings, a cross between two individuals is an obvious necessity for each birth; in many others it occurs perhaps only at long intervals; but in none, as I suspect, can self-fertilisation go on for perpetuity. 【详细】

欧洲杯赔率分析朱忠华北京天通苑禁止外地来京人员进入?当地回应:没有下发通知| 汉语盘点2018|林郑月娥:4日起暂停罗湖、落马洲、港澳码头和皇岗4个口岸
欧洲杯赔率分析克里夫·罗宾森关注欧洲杯赔率分析微信

微信

微博

手机人民网

领导留言板